
APPROACHES TO RTI
IMPLEMENTATION OF HLA

DATA DISTRIBUTION
MANAGEMENT SERVICES

Daniel J. Van Hook, Steven J. Rak,
James O. Calvin

MIT Lincoln Laboratory
Lexington, MA 02173

Keywords: RTI, HLA, Multicast, Scalability

ABSTRACT
The RTI needs knowledge of each federate's data
requirements in order to support HLA requirements
for data distribution management services in an
efficient and scalable fashion. Data requirements
consist of: 1) publications of the classes, attributes,
and attribute values to be produced and 2)
subscriptions for the classes, attributes, and attribute
values to be consumed, i.e., those that are of interest.
The RTI supports a routing space abstraction by
which federates declare their data requirements. This
paper describes the RTI routing space abstraction,
programming interface, and approaches to data
distribution management services implemented in the
prototype RTI as part of the HLA definition process.
Additionally, a framework for optimizing data flow
between federates is described, along with examples
and simulation results supporting development of the
RTI prototype implementation.

1 .0 INTRODUCTION

The Department of Defense (DoD) High Level
Architecture (HLA) RunTime Infrastructure (RTI) is
a software component that provides services
commonly required by simulation systems. These
services include management of time, ownership,
objects, federations, data declaration, and data
distribution. These services are described more fully
in [1,2,3]. This paper addresses three areas: 1) the
data distribution management services in the HLA, 2)
an initial implementation of these services in a
prototype RTI developed to support HLA definition,
and 3) a framework for optimizing data distribution
along with examples and simulation results
supporting development of the RTI prototype.

A goal of the HLA is appropriate support for all
types of DoD simulations. Because a diverse
collection of simulation types must be supported, the
RTI data distribution services must be efficient and
flexible. Efficiency requires that the RTI mechanisms
and interfaces be suited to scaling of simulations
from very small to very large along many
dimensions including numbers of simulated objects,
complexity of interactions, fidelity of
representations, and computational/network
resources. Flexibility requires that the RTI
mechanisms and interfaces not be tied to any
particular problem domain or technology but instead
be general in nature. Simultaneous requirements for
efficiency and flexibility are often difficult to satisfy
and solutions that address either or both must also be
tempered by economic realities.

Data distribution in the DIS protocols and
architecture has been for the most part broadcast, i.e.,
updates and interactions are routed from each
producing simulation to all other simulations.
Irrelevant information is generally discarded at the
receiving simulations in order to reduce local
processing loads. This results in obvious
inefficiencies: local processing resources are
consumed to filter out irrelevant data; network
resources are consumed to deliver data that will only
be thrown away. For small scale simulations such
waste is relatively unimportant. However, the DIS
broadcast scheme becomes unworkable as exercises
increase beyond a relatively small size.

These scaling problems have been addressed in
various ways as part of a number of recent programs
and demonstrations including STOW-E (Synthetic
Theater Of War - Europe) [4], STOW RITN
(Realtime Information Transfer and Networking)

[5,6], and JPSD (Joint Precision Strike
Demonstration) [7]. Common characteristics shared
to a greater or lesser extent by these approaches
include:
• Multicast addressing to route all relevant data and
minimal irrelevant data from producers to consumers.
• Expression of data interests.
• Hierarchical filtering.
• Hierarchical architecture.
While each of these programs has been reasonably
successful in demonstrating the merit of these
capabilities for DIS scalability, their infrastructures
are tied to the DIS protocol, models, and algorithms.
These infrastructures rely upon both implicit and
explicit knowledge of the problem domain they
support. However, to achieve the objectives of
general applicability and flexibility, the HLA cannot
depend on domain specific knowledge. The
quintessential problem is how to provide the RTI
with sufficient information to do efficient data
distribution while maintaining domain independence.
The remainder of this paper describes aspects of the
routing space approach, which appears to satisfy this
requirement.

2 .0 ROUTING SPACES

A fundamental abstraction of the HLA data
distribution management services is the routing
space. A routing space is a multidimensional
coordinate system in which federates express interest
for either receiving attributes and interactions from
other federates or sending attributes and interactions
to other federations. Federates also agree to maintain
associations of data they own to routing spaces. The
RTI uses federates’ expressions of interest to
establish the network connectivity needed to
distribute all relevant data and minimal irrelevant data
from producers to consumers. “Connectivity” as used
in this paper is a generic term that covers various
schemes such as IP multicast, multiple TCP
connections, ATM virtual circuits, etc.

Subscription regions define a subset of a routing
space and specify the data that a federate wishes to
receive. Update regions also define a subset of a
routing space and specify data that a federate offers to
produce and send. The RTI determines which federates
need to receive data from which other federates by
detecting when senders’ update regions overlap with
receivers’ subscription regions in a routing space.

S1

S2

U1

Figure 1: Update (U1) and subscription (S1, S2)
regions defined in a two dimensional routing space.

Figure 1 shows a two dimensional routing space
with a few regions defined in it. In this example,
three federates have specified one region each in the
routing space shown. The first federate specifies an
update region U1 that defines data the federate wishes
to send. The second and third federates specify
subscription regions S1 and S2, respectively. These
subscription regions define data these two federates
wish to receive. The RTI detects that U1 and S2
overlap and establishes the necessary network
connectivity so that the data sent by the federate that
specified U1 is delivered to the federate that specified
S2. In contrast, the RTI detects no overlap between
U1 and S1, so the same data does not need to be
delivered to the federate that specified S1.

A federation may define multiple routing spaces, each
with different characteristics and employed for
different purposes. The following information must
be agreed on by the federation members to use a
routing space:
• The number of dimensions.
• A variable corresponding to each dimension, termed
a routing variable.
• The mapping of the routing variables to routing
space coordinates.
Of these three pieces of information, the RTI only
needs to be made aware of the number of dimensions.
The other two – routing variables and mapping –
only concern the federate.

The number of dimensions may vary from one up to
a maximum value limited only by the RTI
implementation and the underlying technology. There
is no conceptual limit to the number of dimensions
in a routing space. This permits arbitrarily complex
filtering to be specified via routing spaces.

Each dimension has a routing variable identified with
it by the federation. Routing variables may be

attributes such as the scalar temperature.
Components of attributes may also be chosen as
routing variables. For example, each of the three
components of a vector location attribute (e.g.,
latitude, longitude, and altitude) may be selected as
routing variables for the dimensions of a three
dimensional routing space. Routing variables may
also be functions of an attribute or attributes. For
example, speed, calculated as the magnitude of a
vector velocity attribute could be selected as a routing
variable. Routing variables are not even required to
be attributes or be derived from attributes. Any data
item that a federation agrees on can be used as a
routing variable (e.g., IP subnet address).

In addition to the number of dimensions in a routing
space and the routing variables corresponding to each
dimension, a federation must agree on the mapping
from routing variables expressed in federation units
and data types to routing space coordinates. This
mapping requires a federation to agree on the
minimum and maximum values of each routing
variable along with an arbitrary mapping function.
The simplest mapping function is of course a linear
mapping but the federation may agree to use an
arbitrary function of its choice.

3 .0 HLA INTERFACE TO DATA
DISTRIBUTION MANAGEMENT
SERVICES

Data distribution management services are one of the
six service groups in the HLA RTI interface [1]. The
following paragraphs of this paper list each data
distribution management related service (from
Chapter 8 of [1]) along with a brief explanation and
description. Examining the programming interface is
instructive because it brings to the fore many of the
issues involved in actually applying the routing
space approach and makes the approach more
concrete.

void CreateUpdateRegion (
 in SpaceHandle,
 in ExtentSet,
 out Region)
void CreateSubscriptionRegion (
 in SpaceHandle,
 in ExtentSet,
 out Region)
void deleteRegion (
 in Region)

Subscription and update regions are created and
deleted via these services. The first two services take

as arguments a space handle and an extent set while
returning a handle to the new region. The space
handle identifies a particular routing space,
parameters for which are defined in a configuration
file in the prototype RTI. The parameters for a
routing space include the number of dimensions and
any configuration details specific to the
implementation of the routing and filtering
algorithms employed. The extent set defines the
subset of the routing space to create as a region. The
extent set consists of an array of endpoints for
extents along each dimension of a routing space. It
defines a rectangular region in the routing space: a
line segment in one dimension, a rectangle in two
dimensions, a box in three dimensions, etc. The
endpoints are expressed in normalized integer

coordinates that range from 0 to 231 - 1 in the
prototype RTI implementation. Each extent in an
extent set also includes a floating point rate that the
RTI can use to extrapolate extents forward in
simulated time if desired. The returned region handle
is passed in subsequent calls to reference the newly
created region.

void subscribeObjectClassAttribute
(
 in ObjectClassHandle,
 in AttributeHandle,
 in Region)
void subscribeInteractionClass (
 in InteractionClassHandle,
 in Region)

Attributes of object classes and interaction classes are
subscribed for via these services. A federate may
subscribe multiple times using the same region for
both attributes and for interactions. Notionally, each
subscription region can be thought of as a sensor
with some area or volume over which it can sense
the attributes and classes that are subscribed for. The
RTI uses subscription regions provided via these
services to deliver and reflect only attributes and
interactions associated with update regions that
overlap, as described in previous sections. The
concept of association is described below.

void associateUpdateRegion (
 in Region,
 in ObjectId,
 in AttributeHandleSet)
void associateUpdateRegion (
 in Region,
 in InteractionClassHandle)
void disassociateUpdateRegion (

 in Region,
 in ObjectId)
void disassociateUpdateRegion (
 in Region,
 in InteractionClassHandle)

These services associate or dissassociate an update
region, specified by a region handle, with either a set
of attributes for a particular object instance or with
an interaction class. Attribute values or interaction
parameters will be delivered to federates that have
subscribed with subscription regions that overlap the
associated update region in a routing space.
Essentially, these services tell the RTI which data is
to be sent over which routes as specified by the
update and subscription regions. While a region
handle is notionally passed each time attributes are
updated or interactions are sent, the associate service
separates this out to facilitate efficient
implementation. The same region may be associated
with attributes for multiple object instances and/or
interaction classes.

The association formed by these services can be
thought of as a contract between the federate and the
RTI. The federate agrees to ensure that the
characteristics of the object or interaction which map
to the dimensions of the update region fall within the
extents of that region. If not, the object’s attributes
either need to be associated with a different region or
the extents of the region must be modified to reflect
the new object state. For its part, the RTI agrees to
deliver associated attributes and interactions to
relevant subscribers.

void modifyRegion (
 in Region,
 in ExtentSet)

This service modifies the extents of an existing
update or subscription region identified by the region
handle. The new extent set replaces the current extent
set. The extent set is as described above. A federate
modifies an extent set if the subset of a routing space
relevant to the federate changes. For example,
consider a ship steaming along on a straight course.
The federate simulating the ship periodically invokes
this service to modify subscription regions that
model the ship’s sensors and update regions
associated with attributes published for the ship
instance.

void changeThresholds (
 in Region,
 out ThresholdSet)

This service is invoked by the RTI and provided by
federates. It is the means by which the RTI informs a
federate about how much its subscription or update
regions (the subset of a routing space) may change
before the RTI must be informed. This service is
invoked at least once when each region is created to
supply a threshold set. A threshold set is an array of
threshold values, one per routing space dimension.
The RTI prototype provides these values in
normalized coordinates. A federate denormalizes these
values into federation types and units and uses them
to determine when the federate’s interest changes
sufficiently to require notifying the RTI through the
modify region service. The threshold values reflect
any quantization of the routing space by the RTI. In
the earlier example of the ship steaming on a straight
course, the thresholds provided by the RTI inform the
federate how much each update and subscription
region may change before the federate must invoke
the modify region service.

4 .0 PROTOTYPE RTI FRAMEWORK
FOR DATA DISTRIBUTION
MANAGEMENT SERVICES

Previous sections of this paper described the HLA ‘s
routing space abstraction and interface. This section
goes on to describe an underlying framework that
supports implementation of these approaches. This
framework forms the basis for the prototype RTI data
distribution management services but is not implied
by the HLA or the Interface Specification. Key
concepts in the prototype RTI’s framework for data
distribution are:
• Separation of routing and forwarding
• Use of agents and hierarchical architecture
• Hierarchical filtering

4 .1 Routing vs. Forwarding

The RTI separates routing of data (establishing
network connectivity) from forwarding (sending) of
data over those routes in order to minimize latencies
and maximize throughput. The RTI establishes the
necessary network connectivity in advance of when it
is actually needed rather than as the data is transferred.
Federates express interest to the RTI in terms of
classes, attributes, and subscription and update
regions in advance of actually sending or receiving
the related data. The RTI uses federates’ expressions
of interest to establish the necessary connectivity.

4 .2 Agents to Facilitate Scalability

Agents are software entities that assist simulations in
their tasks. Agents may facilitate simulation
processing by taking over compute or
communication intensive tasks or by supplying
information not readily available to a simulation.
The concept and uses of agents in supporting a
scalable, hierarchical architecture for distributed
simulations were described in [8].

The RTI data distribution framework uses
subscription agents to manage federates’ expressions
of interest and to determine the necessary network
connectivity. Each federate communicates its data
interests, expressed in terms of classes, attributes,
and routing space regions, to a subscription agent.
Subscription agents cooperate to determine the
connectivity needed to forward data from producers to
consumers. The RITN program constructed and
successfully tested a subscription agent as part of
STOW Engineering Demonstration 1A [5,6]. The
RITN subscription agent calculated multicast groups
based on its client simulations’ dynamic
subscriptions and publications.

For small simulation systems or simple connectivity
algorithms, each federate has its own subscription
agent executing locally. Larger simulation systems
requiring more interaction or computation may
employ a subscription agent for collections of
federates, e.g., a subscription agent per local area
network.

4 .3 Hierarchical Filtering

The RTI data distribution mechanisms support
hierarchical filtering. Hierarchical filtering means the
ability to filter out or control delivery of data at
different points in a simulation system, depending on
what resource tradeoffs a federation chooses to make
and what infrastructure capabilities are available.
Hierarchical filtering notions have been examined in
[9].

There are three opportunities for filtering in a
simulation system: at sources, in the network via
routing, and at receivers. There are different cost
tradeoffs involved in each of these. For example,
filtering at receivers (after data has been received)
requires only a broadcast capability from the network
infrastructure and little sophisticated routing
capability but lots of computation at receivers as
exercise scale grows. On the other hand, source
filtering (sending data only if another simulation
needs it) requires relatively sophisticated protocols to
inform senders about whether any other simulation

has subscribed for particular data. A third alternative,
filtering via the network infrastructure, requires a
multicasting capability or emulation of multicasting
(e.g., via exploders). Such approaches can yield
greatly enhanced scalability as demonstrated by the
STOW RITN program [5,6].

The RTI supports all aspects of hierarchical filtering.
At the source, a federate can be directed by the RTI to
not send particular attributes and/or interactions. The
approaches described in Section 5 support exploiting
capabilities of the network infrastructure to route
only relevant data to receivers. Finally, the RTI
filters received data based on a hierarchy of tests that
include filtering on:
• Destination address.
• Class and attribute names.
• Update region. The RTI can optionally discard
received messages based on update region extents
included in each message. This capability provide the
ability to do exact filtering despite quantization
effects of some connectivity algorithms as described
in Section 5.

4 .4 Data Distribution Framework

The RTI’s data distribution framework is depicted in
Figure 2. This figure shows five steps involved in
data distribution. Each step is described in the
following paragraphs.

Express interest. Interest is expressed by each
federate to the RTI for the data to be sent and
received. Interest is specified as subscription and
update regions in routing spaces together with classes
and attributes. Federates communicate their interest
to subscription agents.

Cluster. Clustering reduces the number of regions
that must be manipulated by combining subscription
regions together and combining update regions
together. Regions in routing spaces may be clustered
(coalesced, combined, unified) by a number of
different algorithms. This reduces communication and
computation costs related to matching. Clustering is
performed by subscription agents.

Match. Matching compares update regions with
subscription regions to determine overlap in the
routing space. Attributes and interactions associated
with update regions must be received by federates
whose subscription regions overlap with update
regions. Matching produces a list of destination
federates for each update region. Such a receiver list
may be empty in which case the data associated with

that update region need not be forwarded or even
calculated in the first place. That data is relevant to
no other federate.

Establish connectivity. Network connectivity is
established based on sets of receiving federates
resulting from matching update and subscription
regions. An example of such connectivity is a set of
multicast groups.

Transfer data. Attributes and interactions are
transferred from producers to consumers using the
connectivity that has been established. All relevant
data, as determined from matching of clustered
subscription and update regions, is relayed to
appropriate receivers. As little irrelevant data as
possible is routed from senders to receivers.

Match

Cluster

Establish Connectivity

Transfer Data

Express Interest

Update
Regions

Subscription
Regions

Figure 2: RTI Data Distribution Framework.

4 .5 Clustering and Matching By
Multidimensional Binary Trees

This section describes an approach to clustering and
matching of regions in routing spaces, as outlined in
the previous sections. The basic idea of clustering
refers to combining (coalescing, combining,
unifying) regions in a routing space. The purpose of
clustering is to reduce the computation and
communication required to match update regions with
subscription regions. Clustering takes advantage of
the locality of a federate’s subscription or update
regions in a routing space to produce a more efficient
representation.

An important question is how best to represent
regions so that they may be efficiently clustered and
efficiently matched. A number of approaches
applicable to representing spatial regions are
described in [10]. A good compromise between
factors such as storage, computational cost,
complexity, and generality is afforded by the
multidimensional equivalent of a binary tree data
structure. In two dimensions this is called a quadtree,
in three an octtree.

Clustering of regions in routing spaces using
multidimensional binary trees is illustrated in
Figures 3 and 4. Figure 3 shows a two dimensional
routing space with two regions in it denoted R1 and
R2. For purposes of this example, the maximum
depth of the tree is two so that no further
partitioning beyond that shown in the lower right
hand quadrant is permitted. Children of nodes are
denoted 0, 1, 3, and 2 starting from the upper left
quadrant and proceeding in a counter clockwise
direction. A leaf node is denoted in this example by
referencing the sequence of nodes traversed from the
root to the leaf. For example, the bottom right child
of the bottom right child of the root node is
designated 3–3.

R1

R2

0

1

2

3

Figure 3: Illustration of clustering of regions in a
routing space using multidimension binary trees.

The quadtree data structure corresponding to the
routing space in Figure 3 is shown in Figure 4. The
ordering of the children at a node is 0, 1, 3, and 2
from left to right. Region R2 is inserted into the
quadtree at node 3–2 because R2 lies within the
subset of the routing space allocated to this node and
only this node. Region R1 is inserted into the

quadtree at node 3 because R1 lies within the subsets
of all four children of node 3.

Multidimensional binary tree data structures can be
very efficiently represented by a set of integer codes
that cluster or combine together individual regions
inserted in a tree. Such codes reference nodes in the
tree and hierarchically define clusters of regions. The
code representing the clustering of the regions in our
simple quadtree example can be reported as “3.” This
references the lower right child node of the root. This
represents both region R1 and region R2.

Matching consists of efficient mask and compare
operations on arrays of integer codes representing
subscription regions and update regions clustered via
multidimensional binary trees.

R1

R2

0 1

3

2

0 1 3

2

Figure 4: Depiction of the quadtree data structure for
the regions and routing space in Figure 3.

5 .0 APPROACHES AND ANALYSIS

This section describes some approaches to
implementing the data distribution framework
described in Section 4. It does not represent testing
and evaluation of the performance of the RTI
prototype being carried out at IEC/TEC [11]. Instead,
it represents results and concepts from design studies
carried out to aid in developing the RTI prototype.

The analysis reported in this paper has been
performed on log files collected during the STOW
RITN ED1A exercise. ED1A consisted of an week
long intensive test of the RITN scalability and
network infrastructure during which a large body of
network traffic was logged. The test scenarios were
predominantly ground engagements of between
several hundred to more than five thousand simulated
entities generated by ModSAF running on 62
workstations. The workstations were distributed
across seven LANs at NRL, NRaD, TEC, IDA, and

University of Texas ARL. These sites were connected
by a multicasting ATM WAN. Further details about
the RITN architecture and the ED1A experiment are
found in [5,6]. The data reported in this paper were
taken from a scenario consisting of approximately
2000 entities and a little over thirty minutes
duration.

Figure 5: Total packet rates delivered to simulators at
the NRaD 156 LAN for various filtering algorithms.
STOW ED1A Run 2.1 of 14 November 1995.

Figure 6: Total packet rates delivered to simulators at
the NRaD 156 LAN for receiver-based filtering and

various quadtree depths. STOW ED1A Run 2.1 of 14
November 1995.

Figure 5 shows the total packet rate delivered to the
eleven workstations located at one of the two NRaD
LANs over the course of the scenario. The top trace
shows the broadcast traffic that would have been
delivered to the workstations (the sum over all the
workstations) had no filtering algorithms been used.
The bottom trace shows ideal traffic flows. Ideal
traffic was calculated by post processing logger data
to determine what traffic needed to flow between host
computers based upon the viewing ranges of the
simulated entities. Viewing ranges of four kilometers
and ten kilometers for ground and air vehicles were
used, respectively.

The broadcast and ideal traces form a useful set of
bounds for comparing the effectiveness of other
filtering techniques that we wish to evaluate. Three
additional classes of techniques (grid-based, receiver-
based, and sender-based) will be described and
preliminary measures of their performance presented
in the following sections. Each of these techniques
supports the routing space abstraction, programming
interface, and data distribution framework described in
previous sections of this paper.

5 .1 Grid-Based Filtering

Grid-based filtering approaches provide relatively
simple mechanisms for establishing sufficient
connectivity for the RTI to route relevant attributes
and interactions from producers to consumers. A grid
may be used to determine which updates and
interactions to route to which receivers as follows:
• Subdivide each routing space into an array of cells
and assign a multicast group to each cell.
• Determine which cells overlap each subscription
region and join the groups assigned to those cells.
• Determine which cells overlap each update region
and send updates for attributes and interactions
associated with an update region to the groups
assigned to the overlapping cells.
• Federates receive data sent to groups they have
joined (relevant data) but do not receive data sent to
groups they have not joined (irrelevant data).

Figure 7 illustrates the grid approach. In this
example, a two dimensional routing space is
configured to have four cells along one dimension
and three along the other. A federate specifies a
subscription region S1 and joins groups 1–3, 5–7,
and 9–11. Attributes and interactions associated with
update regions U1 and U2 are sent to groups 10 and

9, respectively and delivered to the federate that
specified S1. Attributes and interactions associated
with U3 are sent to group 4 but are not delivered to
the subscribing federate.

0 1 2 3

4 5 6 7

8 9 10 11

S1

U1
U2

U3

Figure 7: Illustration of grid-based filtering showing
pairing of groups with cells and matching of update
regions (U1, U2, U3) and subscription regions (S1)
via a grid.

Example performance of a grid algorithm with 2.5
kilometer square cells on the STOW ED1A data is
shown in Figure 5. As can be seen from the Figure,
cumulative delivered traffic is within 10 – 20% of
that obtained with the ideal algorithm. The grid
departs from ideal performance because of
quantization effects of square grids as has been
discussed in [12,13].

The simplicity of grid approaches makes them
attractive. They are relatively easy to implement and
robust because they require no interaction between
agents for senders and receivers to establish
connectivity. Matching of subscription and update
regions is performed implicitly on a grid local to
both the senders and receivers. Only the number of
cells in each dimension and the algorithm for
assigning multicast groups to cells must be shared.
Clustering is not absolutely necessary because
interest regions need not be communicated nor is
mapping of subscription and update regions to grid
cells a particularly compute intensive operation.

Despite these good features, grid approaches have a
number of drawbacks that make them inadequate or
unacceptable for many applications. These include:
• Large numbers of groups may be needed if the
number of routing spaces and routing space
dimensions is at all large. Multicast groups tend to
be a scarce resource whose over use has performance
implications in the network infrastructure and in host

I/O performance. Use of a larger number of groups
also implies an increase in group change rate with
more bursty traffic profiles as an undesirable
consequence [14].
• Multiple transmissions may be required for extended
update regions that are not points in routing space
(one for each grid overlapped by the update region) or
excessively large interest extents, thereby reducing
efficiency. While most vehicles and individual
combatants can be adequately dealt with by point
update regions, some simulated objects are inherently
volumetric. Examples include weather, smoke, dust,
electromagnetics, nuclear, chemical, and biological
effects.
• No explicit use of information about what data is
relevant is exploited, making grid approaches
suboptimal. Data is sent even if it is relevant to no
other federate. Also, the number of groups used can
be in excess of what is actually needed provide the
necessary connectivity. This is because senders have
no idea what receivers are listening vice versa.
• Irrelevant data is delivered because of the inherent
quantization of the grid. Addressing this problem by
reducing the grid size (increasing the number of cells
along any routing space dimension) can vastly
increase multicast group usage. In the RTI prototype,
update regions are included in each update to permit
irrelevant data to be optionally discarded through
filtering at the receivers.

Overall, grid approaches are adequate for applications
that do not need to push the limits of scalability,
performance, and cost. Relative ease of
implementation induced the RTI development team
to select a grid approach as the initial approach in the
RTI prototype. But better approaches are needed to
achieve the required scalability of simulation systems
supported by the RTI.

5 .2 Receiver-Based Filtering

Receiver-based filtering is distinguished by forming
sets of receivers for each piece of data and then
establishing the connectivity (e.g. determining a
multicast group) to permit that data to be delivered.
This is in contrast to the grid-based approach
described earlier in which groups were formed with
no explicit knowledge of what receivers (if any) were
actually interested in a particular piece of data. The
motivation for such an approach is that it should
yield more effective filtering and control over
network and processor resource consumption.

In receiver-based filtering, subscription agents cluster
each federates’ subscription regions and update

regions and communicate the clustered subscription
regions to other subscription agents. Each agent
matches its local update regions with subscription
regions from other agents to determine a set of
receiver federates. The matching operation produces
lists of federates to which data associated with each
update region must be delivered. Multicast groups
providing the necessary connectivity are determined
for each update region. Attributes and interactions are
transmitted using these groups. As the update regions
or subscription regions change the connectivity is
incrementally recalculated. A number of approaches
are possible for determining what multicast groups to
use for each update region. These approaches range
from fully static at one extreme to fully dynamic at
the other with variations and compromises in
between.

A static group database can be established at
initialization time and shared by all federates. The
group for each update region is determined by
looking up an appropriate group, given a list of
federates. It is not possible to predefine every
possible group for federations composed of more than
a small number of workstations. However, tools
such as SAT/IAT [15] or Sim^2 Toolset [16] can be
used to determine a good set of groups based on
expected traffic flows for a particular scenario. At run
time, group selection becomes an optimization
problem of selecting a group that contains all
necessary federates and as few unnecessary federates as
possible. In the worst case, a group consisting of all
federates is used. This approach is simple and
relatively robust but will certainly be less than
optimal.

At the other extreme, completely dynamic grouping
can be employed. A dynamic scheme creates a new
group consisting of precisely the required set of
federates. The new group is added to a shared group
mapping database. If the necessary group already
exists in the shared group mapping database it is not
created. This approach can provide near optimal
connectivity but may be impractical to implement in
a large distributed system unless sophisticated
heuristics are employed.

An intermediate approach is to permit the
connectivity represented in the shared group mapping
database to evolve slowly to match the requirements
of each exercise. Such an approach can come close to
providing the ideal connectivity while remaining
practical.

Initial simulation results for such approaches used a
cellified clustering technique instead of
multidimensional binary trees and were presented in
[17]. Current results for such approaches are shown
in Figures 5 and 6. Figure 6 shows the performance
of receiver-based filtering for a number of different
tree depths relative to ideal filtering. As expected, the
effectiveness of the algorithm increases (less traffic is
delivered) as the partition size gets smaller (tree depth
gets larger). This occurs because less irrelevant
traffic is being forwarded to each group as the
partition size is reduced. This simulation was done
with rectangular extents in a two dimensional routing
space. If regions are specified using shapes that more
closely match the geometry of simulated objects’
interest (e.g., circles), the effectiveness can be made
very close to the ideal by increasing tree depth. This
is possible without the explosion in multicast
groups that would be experienced with a grid-based
approach. Figure 5 shows performance of the
receiver-based prototype with other approaches.

5 .3 Sender-Based Filtering

Sender-based filtering can be considered a dual of
receiver-based filtering. Rather than compose sets of
receivers, subscription agents for senders instead
assign groups to each update region cluster and
inform other agents. Subscription agents acting on
behalf of potential receivers match subscription
regions with update regions supplied by remote
agents to determine which groups to join. The
concept is like tuning a radio: agents sample a bit of
the signal (the update region) and tune in (join a
group) only if they find it interesting.

Group selection can be dynamic or static and is done
by the senders’ agents. The simplest approach is to
statically allocate a set of groups to each subscription
agent. The agent clusters update regions and assigns
groups to each cluster. Federates send their data to the
group for each cluster. Receivers join groups for
update region clusters that match their own
subscription regions.

Figure 5 shows simulation results for the sender-
based filtering approach. This simulation employed a
single cluster and group per federate. As the graph
shows, this simple approach yields a considerable
benefit over broadcast but is not nearly as efficient as
grid or receiver-based approaches. However, only a
very small number of groups (one per federate, i.e.,
62) were required to achieve this result.
Enhancements to this simple algorithm should result
in considerably better performance.

6 .0 CONCLUSIONS

Routing spaces are useful abstraction for simulation
programmers to use to specify the data requirements
of their simulations. They provide relatively refined
control over data distribution while maintaining a
useful degree of abstraction. In addition, they provide
sufficient information to enable implementation of
sophisticated and efficient filtering and routing
algorithms in the RTI while maintaining federation
independence and flexibility.

The RTI can concurrently support a number of
filtering/routing schemes so as to satisfy the differing
requirements of various federations and types of data.
The new techniques being prototyped and evaluated –
receiver-based and sender-based filtering – appear to
be very promising and are able to address many of the
shortcomings of more familiar grid-based schemes.

7 .0 REFERENCES

[1] The RTI interface is defined by the document “Department
of Defense High Level Architecture For Simulations Version 1.0
Interface Specification.” This document can be found on the
World Wide Web at http://www.dmso.mil/projects/hla/.
[2] Calvin, James O., Richard Weatherly, “An Introduction to the
High Level Architecture (HLA) Run-Time Infrastructure
(RTI),” 96-14-103, Fourteenth Workshop on Standards for the
Interoperability of Distributed Simulations, March 11-15, 1996.
[3] McGarry, Stephen M., Paul N. DiCaprio, Richard Weatherly,
Annette Wilson, “Design Issues for the High Level Architecture
(HLA) Run-Time Infrastructure (RTI) Prototype Version 0.2, “
96-14-104, Fourteenth Workshop on Standards for the
Interoperability of Distributed Simulations, March 11-15, 1996.
[4] Van Hook, Daniel J., Michael Newton, David Fusco, James
O. Calvin, “An Approach to DIS Scaleability,” 94-11-141,
Eleventh Workshop on Standards for the Interoperability of
Distributed Simulations, September 26-30, 1994.
[5] Calvin, James O., Joshua Seeger, Gregory D. Troxel, Daniel
J. Van Hook, “STOW Realtime Information Transfer and
Networking System Architecture,” 95-12-061, Twelfth
Workshop on Standards for the Interoperability of Distributed
Simulations, March 13-17, 1995.
[6] Van Hook, Daniel J., David P. Cebula, Steven J. Rak, Carol J.
Chiang, Paul N. DiCaprio, James O. Calvin, “Performance of
STOW RITN Application Control Techniques,” 96-14-157,
Fourteenth Workshop on Standards for the Interoperability of
Distributed Simulations, March 11-15, 1996.
[7] Powell, Edward T., Larry Mellon, James F. Watson, Glenn H.
Tarbox, “Joint Precision Strike Demonstration (JPSD) Simulation
Architecture,” 96-14-116, Fourteenth Workshop on Standards
for the Interoperability of Distributed Simulations, March 11-15,
1996.
[8] Calvin, James O., Daniel J. Van Hook, “AGENTS: An
Architectural Construct to Support Distributed Simulation,” 94-
11-142, Eleventh Workshop on Standards for the Interoperability
of Distributed Simulations, Sept 26-30, 1994.
[9] Mellon, Larry, “Hierarchical Filtering in the STOW System,”
96-14-087, Fourteenth Workshop on Standards for the
Interoperability of Distributed Simulations, March 11-15, 1996.
[10] Foley, Van Dam, Feiner, and Hughes, “Computer Graphics:
Principles and Practice,” Addison-Wesley, 1990.

[11] Olszewski, Jeff, Larry Mellon, Richard Briggs, “HLA
Testbed Declaration Management Experiments,” 96-15-096,
Fifteenth Workshop on Standards for the Interoperability of
Distributed Simulations, September, 1996.
[12] Van Hook, Daniel J., Steven J. Rak, James O. Calvin,
“Approaches to Relevance Filtering.” 94-11-144,Eleventh
Workshop on Standards for the Interoperability of Distributed
Simulations, September 26-30, 1994.
[13] Rak, Steven J., Daniel J. Van Hook, “Evaluation of Grid
Based Relevance Filtering for Multicast Group Assignment,” 96-
14-106, Fourteenth Workshop on Standards for the
Interoperability of Distributed Simulations, March 11-15, 1996.
[14] Van Hook, Daniel J., James O. Calvin, Joshua E. Smith,
“Data Consistency Mechanisms to Support Distributed
Simulation,” 95-12-059, Twelfth Workshop on Standards for the
Interoperability of Distributed Simulations, March 13-17, 1995.
[15] Juliano, Michael, Robert D'Urso, Ben Wise, Edward Powell,
“Scenario and Infrastructure analysis to Measure Large-Scale
CGF Exercise Performance,” 1996 CGF
[16] Van Hook, Daniel J., Deborah J. Wilbert, Richard L.
Schaffer, Walter Milliken, Dennis K. McBride, “Scaleability
Tools, Techniques, and the DIS Architecture,” Proceedings of
the 15th Interservice/Industry Training Systems and Education
Conference, 1993.
[17] Van Hook, Daniel J., Presentation at the STOW RITN
Design Review, December 12, 1994.

